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Definitions

Periodic in D

Let w = f(z) be a single-valued function defined in the domain D of the com-
plex plane, and let A # 0 be a constant complex number. Suppose that for
every z € D, z+ A € D. The function f(z) is said to be periodic in D, if for
all z€ D, f(z+ X)) = f(2).

Example: Since 127 = ¢%e2™ = ¢*(cos2m + isin27m) = e* Vz € C, e* is
periodic in C.

Fundamental Period

We call the complex number A = 27¢ the fundamental period of the function
e” in the sense that any other period w of e* must be of the form 27ki, where
ke Z\{0}.

Example: Since e*t2™ = ¢%e2™ = e*(cos2m + isin2m) = e* Vz € C, €* is
periodic in C.

(Principle) Logarithm

Let 2 #£ 0,z € C. If w € C and e¥ = z, then w is called a logarithm of z where
w = log z. This is a set-valued function where

w=logz={ln|z|+iArgz+2nmi|n € Z}, for —m < Argz <
Note that w = In|z| + ¢ Arg 2z, that is n = 0, is called the principle logarithm
and is denoted by Logz = In |z| + i Arg z.
(Principle) Branch

A branch is a restricted range of a multi-valued function w = f(z) over which
there is a single value w for each z and for which f(z) is continuous. If the
branch’s range is restricted to the principle values, we call it the principle
branch of the function.



Branch Cut

A branch cut of a multi-valued function is a curve in the complex plane across
which the function is discontinuous. A branch cut is used to separate a multi-
valued function into single-valued and continuous parts (branches).

Branch Point

The point 2y is called a branch point of a complex multi-valued function f(z)
if it is shared by multiple branch cuts of the function.

Complex Exponent
If z #£ 0 and ¢ € C, we define z¢ by

5¢ — € log z
where log z is the multi-valued logarithm of z. The principle value of 2¢ is
defined by

2¢ = ecLogc

Trigonometric Functions

For all z € C:
eiz +67iz
COSzZ =
2
) iz e—iz
SNz = -
21

d (cos z) d (erte sin z
R = — | — = — 8l
dz dz 2

i(sinz) _4d ﬂ = cos 2
dz T dz 21 -

Not that all trig. identities involving sin and cos over R hold over to C (see
Theorem. 2.27.A).

Inverse Trigonometric Functions
For all z € C:

sin™!z = —ilog |:ZZ +(1- 22)%}

[N

cos 'z = —ilog {z +i(1 — 2%)

tan™! 2z = (%) log (Z + Z)

11—z




Given these are defined in terms of logarithms and square roots, all these func-
tions are multi-valued.

If a specific branch is chosen for these functions, they become analytic and have
the following derivatives:

i(sirf1 z) = !

dz V1= 22

i(cos_1 z)=— !

dz V1—22
d . 1
st ) =

Derivatives of Functions w(t)

Consider a complex valued function of a single real variable ¢t. For ¢ € [a, 1],
w(t) =U(t) +iv(t)

Define w'(t) as

TR
=u'(t) +iv'(t)

provided all the derivatives exists.

Definite Integrals of Functions w(t)
For w(t) = u(t) + iv(t),t € [a,b] we define the integral of w(t) over [a,b] as

/ab w(t)dt = /ab u(t)dt +i/abv(t)dt

provided the integrals on the RHS exist. Now, if w(t) U
W(t) = U(t) + V(¢) are continuous on the interval [a,b] and

Yt € [a,b], then
/bw(t)dt - /bu(t)dt i /bv(t)dt

= (U(b) +1iV (b)) — (U(a) +iV(a))
=W(b) — W(a)

( (t) and

t) + v
W'(t) = w(t)

Note that the Mean Value Theorem does not hold for complex integrals.



Arcs, Curves, and Contours

1. A continuous function of a real variable ¢, v : [a,b] C R — C is called an
arc. We can express y(t) as

(1) = a(t) + iy()]

for t € [a,b], where z(t) and y(¢) are real valued functions and are called
the real and imaginary parts of v. We denote the arc v(t) by C.

2. We say arc C : (¢) for t € [a,b] is simple if v is injective (i.e. the curve
does not cross itself.

3. A closed curve is an arc v : [a,b] — C such that y(a) = v(b).

4. A closed curve 7 : [a,b] — C is said to be simple when + is injective on
the open interval (a,b) (it is a simple closed curve).

5. We say v : [a,b] — C is a differentiable arc when 4’ is defined and
continuous on [a, b]. If we additionally have that z'(t) # 0 for all t € (a,b),
then we say - is a smooth arc.

6. If C is the arc v : [a,b] — C, then we write —C for the arc that we denote
by v~ : [-b,—a] — C and that is given by

7 (8) = (=)

for —b < t < —a. Put simply, this is the same arc as 7y, but traversed
backwards. We call —C the opposite arc of C.

Alternative definition: We may define v~ as
v~ :10,1] — C, where
7 () =70+ 1-1) =~(1-1)
Note that in this case, v~ (0) = (1) =4 and v~ (1) = v(0) = 1.

7. A contour is a piecewise smooth arc. Simply put, a contour is an arc that
is created by placing finitely many smooth arcs end to end. As a function,
this is defined as 7 : [a, b] — C where

y(t) fa=ag<t<a

Y(t) fa=a <t<as
V() =4 .

() fa=ap_1<t<a,=b
where a = a9 < a1 <+ <an_1 < a, =b, and

y1(a1) =v2(az), ..., Yn-1(an-1) = Yn(an_1)



We call v1,72,...,7v, parametrizations of smooth arcs C1,Cs,...,Cy. In
this case we write
C=C+Co+---+0C,

Note: There is no unique parametrization for a contour C.

Curve Orientation

A simple closed curve is said to be positively oriented when it is traced out
in a counter-clockwise direction as t ranges from a to b.

It is said to be negatively oriented when it is traced out in a clockwise
direction as t ranges from a to b.

Reparametrizations

Let 7y : [a,b] — C be a curve. A curve 7 : [a, ] — C is called a reparametriza-
tion of « if there is a C! function ¢ : [a,b] — [o, 8] with /() > 0, p(a) = «,
and (b) = § such that

V() = (7o) (t) = V(1))

That is to say, there is no unique parametrization for a contour. Note that
the contour integral and arc length of a complex valued function is independent
of the parametrization of the contour we integrate over.

Contour Integral

Suppose f : D — C is acomplex valued function, where D C C. Let C be an arc
given by the function v : [a,b] — D in D. f is said to be continuous on arc C if
the function ¢(t) = (f o ¥)(t) is continuous on [a,b]. In this case, the integral
of f(z) along the arc C is denoted by fv f(2)dz and it is defined by
b
[ s = [ (somnnwar
¥ a

b
- / FOv ) (e

where the integral on the right hand side is the Riemann integral of a real
variable t.

Initial & Terminal Points

Suppose that a = a1 < by = ay < by, = ap < by = b are real numbers,
and that for every j = 1,2,...,k, C; is an arc given by ~; : [a;,b;] = D C C.
Suppose further that 7;(b;) = vj+1(aj+1 for every j = 1,...,k — 1. Then,
C=C1+Cs+ - +Cy is called a contour. The point 1 (ay) is called the initial



point of the contour C, and the point v (bx) is called the terminal point of
the counter C. A complex valued function f: D — C is said to be continuous
on the contour C if it is continuous on the arc C; for every j =1,2,...,k. In
this case, the integral of f along C is defined by

/Cf=/61f+ 62f+---+ Ckf

Simply Connected Domains

Informally, simply connected domain is an open connected set with "no
holes.” An extension of Cauchy-Goursat tells us that the integral of a function
that is analytic over a simply connected domain is 0 for all closed contours in
the domain.

A more formal definition follows: A simply connected domain D is a domain such
that every simple contour in the domain encloses only points in D. Another way
to view this is that a domain is simply connected if any simple closed contour
C lying entirely in D can be shrunk to a point without leaving D.

Multiply Connected Domain

A domain that is not simply connected is called a multiply connected do-
main. Thus a multiply connected domain has "holes” in it.

Theorems

3.29.A

If 21 = x1+iy; and 2o = 29+iys are two complex numbers, then e*1e?? = 1122,
Note if z; = z and 23 = —z, then e* - e=% = € = 1, therefore e % = eiz
Proof:

e*1e*? = e (cosyy +isiny) - €"2(cosys + isinys)
= "1 %2[(cos 11 cOS Yo — SiN Yo Sin yo)

+ i(siny1 cos Y2 + sin ya cos ya )]

= M2 (cosyy +yp +isinyr + y2)

— A1tz

3.29.1
(a) Vz € C, e* £0.



(b) |e®| =1 and |e*| = e® Vz =z + iy € C.
(¢) A necessary and sufficient condition that e* =1 is z = 27ki, k € Z.

(d) For z1,22 € C, we have ¢** = ¢*? if and only if z; = 23 (mod 2mi).
Proof:

(a) By Lemma 3.29.A we have:
e F =t =0 =1
Since the product is never zero, neither factor can be zero. Therefore,

e* # 0.

e = cosy + isiny
le¥| = y\/cos?y +sin’y = 1

€] = le"e™| = [e”[|e”] = |e*| = e”

It follows,

(¢) Suppose that e* = 1. Thus e* = e cosy + ie* siny = 1 + 0i. This implies
e”cosy =1 and e*siny = 0. Since ¢” # 0 = siny = 0 = y = nx for some
n € Z. But cosnm = (—1)". Since e” > 0 we see that e”(—1)" =1 only if
x =0 and n = 2k for some k € Z. Thus z = z + iy = 0 + inm = 27ki.

Conversely, assume that z = 27ki, where k € Z. Then by the definition
of the exponential function,

e? = e?™ = cos 27k + isin 27k = 1

(d) e* = e* if and only if &} = 1.

22

= 1772 =] = 2] — 29 = 27kt
= 21 = 29 (mod 277)

Claim 1

The exponential function defined for every z € Rg by f(z) = e* is a bijection.

Proof:
Assume for z1, 20 € Ry we have

e? =€ = 21 = 2o (mod 2mi)

= 21 — 29 = 27ki



for some k € Z. But since z1, 25 € Ry, if z1 = x1 + 1y1 and 25 = 2 + iyo, then

<Y, Y <T=>2n<yYy —yY2 < 2m
=k=0

= 21 = 292

Therefore, f(z) is one-to-one.

To show f(z) = e is onto, let w = e*, where w # 0 is given, and z = x + iy be
unknown.

lw| =e* =z =In|w|
argw = y + 2wk or y = argw
Obviously, there are infinitely many values of w, since argw takes infinitely

many values, all differing by integer multiples of 27. Exactly, one of these
values corresponds to a unique z € Ry. O

3.29.2

The exponential function f(z) = e* is analytic for all z € C. Moreover, f'(z) =

e,

Proof:
Let f(z) = e = u(x,y) + iv(z,y). This implies f(z) = e” cosy + ie* siny =
u(z,y) = e” cosy,v(x,y) = e*siny. So,

du .
Tp =€ cosy
Z—Z = —e’siny
j—; =e"siny
Z—Z = e cosy
Hence, % = Z—Z and Z—Z = fg—;. Thus u and v satisfy the C-R equations and

since these partial derivatives are continuous V(z,y) € R?, then f(z) = e* is
analytic Vz € C. Moreover,



3.30.1

For any complex number z # 0, there exists some complex numbers w such that
e = z. In particular, one such w is the complex number Log z, defined as

Logz=1In|z| +iArgz

This is called the principle log. Other values of w are given by {In |z|+i Arg 2+
2nmi | n € Z} which is denoted by log z.

Proof:
Writing z = z + iy in polar exponential form: z = re?, where r = |z| =
vx?2 +y? and 0 = Argz for —m < 6 < 7. Now, observe that

eln|zH—'LArgz — eln|z . ezArgz
— |Z‘619
=z

Hence, w = In |z| + i Arg z is a solution of the equation e¥ = z. Now suppose
that wy is another solution of e¥” = z. Then,

el =e¥ =2

=T =1

=w; =w (mod 2mi)

= wy; — w = 2nmi, for some n € Z

= w; = w + 2nmi

= w; € {ln|z| +iArgz+ 2nmi | n € Z}

Remarks 1

Fix o € R and define
logz=1Inr+ 0

where z = 7e'?, r > 0, o < 6 < o + 27. This defines a branch of the logarithm
with a branch cut 6 = a.

1. The function z — log z is analytic.

2. When a = —m, we call log z the principle branch of the logarithm and we
denote it by Log z.

3. Let log z be any branch of the logarithm. Then,

d 1
- S
5, log2) =~



Proof:

1. f(2) =logz = Inr + 6 implies
u(r,0) =Inr,v(r,0) =0

du 1 du B
dr 1 do
dv v
dr " db
The C-R equations in polar coordinates
du_1_ldv_1
dr r rdf r
dv 1du 1
2 =0=—,5 =)0
du du dv

are satisfied. Moreover and % are continuous. Therefore

f(z) =log z is analytic.

dr> df’ dr>

2. Not necessary.

3. We have €'°8# = z. This implies
d d

@(elogz) = @(Z)

d d
logz & -4 _
e 7 (logz) =2 7 (logz) =1

1

P

So, 4 (logz) =

3.32.A

For the set-valued (or multi-valued) logarithm, we have for all nonzero 21, 29 €
C:
log 2129 = log z1 + log 29

Note that the left and right sides represent infinite sets (same goes for 3.32.B
and 3.32.C).

Proof:
By definition, logz = In|z| + iarg z, and by Lemma 1.8.1 argz120 = argz +
arg zo, then
log z129 = In |z122| + i arg z1 20
=lIn|z1| +In|2s| +iargz +iargzy
= (In|z1| +iargz1) + (In|z2] + i arg 22)
= log z1 + log 22

10



3.32.B

For the set-valued (or multi-valued) logarithm, we have for all nonzero 21, 22 €
C:

log 2 log z1 — log 2o
22

Proof:
logﬂ = 1n|Z—1| —l—z'argﬂ
V) z9 V)
=lIn|z1| — In|zs| +iargz —iargzy
= (In|z1| +iarg z1) — (In|22| + i arg 22)
= log z; — log 25
O
3.32.C
If z € C is nonzero and n is an integer, then log z” = nlog z.
Proof:
logz™ =n|z"| + targ 2"
=nln|z| +inargz
=n(ln|z| +iargz)
=nlogz
O
3.32.D
(a) For any nonzero z € C and n € Z:
P enlog;z

(b) Let n be a positive intger, and let z € C\ {0}:

2m = ew 1082

Proof:

11



(a) Write z = re?®, where r > 0 and 6 € R. Then 2" = "¢, For k € Z:

en log 2z n(lnr+i0+27k)

=€
= Inr+i(n0+2mkn)

— n Inr | ez(n9+27rkn)

= """ [cos (nf + 2wkn) + i sin (nf + 2mkn)]

= """ (cosnf + isinnb)

_ rnezne

:Zn

(b) Write z = 7€, r > 0,6 € R. For k € Z:

Llog 2 L (Inr+i(6+2nk))

er =e
— ewlnr Gi(Z+3E)

1 . 5
_ elnrn . 61(%+22k

= C/?jei(%Jr%),k €{0,1,2,...,n—1}

3=

=z

3.32.D Corollary
For any z € C\ {0}, m,n € Z,n > 0:

Zn = e(T)IOgZ

Remarks 2
1. 2¢ is single-valued when c is a real integer.
2. z¢ takes finitely many values when c is a real rational number.

3. z¢ takes infinitely many values in all other cases.

Properties of Complex Exponents
Let z # 0, a, and 8 be complex numbers. Then:
1. 2. 28 = zo+8
2. z—; =20 F

3.

—~

29t =2"* nel

12



4. (21 22)* # 2§ - 2% (in general)
5

. (2%)P # 2%F (in general)

Proof:

(03

P 'Z’B :ealogz 'eﬁlogz

— e® log z+ S log z
_ e(a-i—ﬂ) log z

— o8

2. By (1) we have 2078 . 28 = »(@=A)+8 = > Divide both sides by 2°:

(Za)n _ (ealogz)n _ e(noc) logz _ Lna

4. Think of an example

5. Consider z =i,a =4, = 3.

Jordan Curve Theorem

If S is the range of a simple closed curve in the complex plane C, then the
complement C\ § is the union of two disjoint domains, one g which is bounded
and the other of which is unbounded.

Proof:
Here be dragons! O

Properties of Complex Integrals
1. The integral fc f(2)dz is a special type of line integral.

2. The following two properties imply integration of complex functions along
an arc is a linear operation:

/c (f(2) + g(=) d= = /C F(2)dz + /C g(2)dz

/cf(z)dz = c/ f(2)dz, where ¢ € C is a constant.
c c

13



3. [ o f(2)dz=— [, f(2)dz

4. If 4 is a reparametrization of v, then

Af@MZ=éf@Mz

for any continuous f defined on an open set containing the image of v =
image of 7.

5. Given a contour C such that C = C; +Cs + - - - 4+ Cy, and a function f that
is continuous along the contour,

IRy AV AR R

Proof:

1. Let C : v(t) = x(t) + y(t), where a < t < b. And let f(z) = u(z,y) +
w(x,y), where z = x + iy.

b
Lﬂ@M=LfW@M@ﬁ

b
=/wmm+mwmet

a

b
:/ (u(y(®)) + iv(y(E) (@' (1) + iy (t))dt
b
=/ [u(z(t), y(1))a' () + u(x(t), y(£)y' (t)] dt

_ /ab {u(x(t),y(t))ﬁ dt — /ab [v(;v(t),y(t))zﬂ dt

dz

+i/ab {v(x(t),y(t)) dt] dt+i/ab {u(m(t),y(t))‘ﬂ dt

b b b b
:/udx—/vdy—i—i/ vdw—i—i/ udy
a a a a

:/udx—vdy+i/vdx+udy
c c

2. Exercise.

3. Let C be given by 7 : [a,b] — D, then the opposite arc —C is given by
v~ : [a,b] = C and defined by

v~ (t) =v(a+b—1t),t € a,b]

14



Now,
./—c f(z)dz = /7_ f(z)dz
—/ (fer ) ® (7‘(t))'dt
/tf (a+b—1)) ((a+b—ﬂﬁ
/‘f (a+b—1)y(a+b—t)(—1)dt

/lf a+b—1t))y(a+b—t)dt

Substituting u = a + b — t we obtain

_/af(v(u))'y'(u)(—du)Z/af(V( ) (u)d
b b

Hence [ , f(z)dz = — [, f(

. Let «y : [a,b] — 0 be asmooth arc, and let 7 : [a, f] — D be a reparametriza-
tion of 4. Thus thee is a C!- functlon ¢ : a,b] = [o, B] with ¢'(t) > 0,

p(a) = o, and (b) = 4 such that (t) = 3(¢(£)).

/7 f= / " F 0 - ()

A (6) = % A =7 (60) - /(1)

By the chain rule,

Let u = ¢(t) be a new variable so that u = a = p(a) and u = 8 = ¢(b).

Then,
/a £ (1) 7 ()t = /f F (p(1))
()7 (w)d



O
subsection*4.43.A If w : [a,b] — C is a piecewise continuous complex valued
function in the real closed interval [a, ], then

b
/ w(t)dt
Proof:

Let I = ’f:w(t)dt‘. If I =0, then clearly

/ " w(t)at] < / " () at

If I > 0, then there exists a real number 6 such that

b
< / ()|t

0=

b
/ w(t)dt = Ie®

Which implies
b
I:efw/ w(t)dt
n
:/ e~ (t)dt
:/ Re(e*ww(t))dtJri/ Im(e~®w(t))dt

Since I = ’f:w(t)dt is a real number, then f: Im(e~®w(t))dt = 0. Hence,

I= ff Re(e~*w(t))dt. On the other hand, clearly

Re(ew(t)) < e w(t)| = [w(t)]

for all ¢ € [a,b]. Thus,

That is to say,

16



4.43.1

Let C be a contour of length L, and suppose that f is a piecewise continuous
function on C. If M > 0 is a constant such that |f(z)| < M for all z € C, then
Uc f(z)dz| < ML.

Proof:
WLOG we may assume that C is a smooth arc given by the function + : [a, b] —
C. Then,
b
[l = | [ remm o
b
< [ 6o o
b
< [ 161 @)
b
< [ g oae
"
=t [ o) ae
=ML
O
4.44.A

Let f be a continuous complex-valued function on the domain D C C. Then
the following statements are equivalent:

(a) The function f has an antiderivative on D.

(b) For any 21,23 € D and contours C; and Cs in D from z; to zs,
f(2)dz= [ f(z)dz
Cl C2
(¢) For every closed contour C in D,

/c f(z)dz=0

Proof:
(a) = (b) First, we assume C is a smooth arc from z; to zo parametrized by

17



v : [a,b] = C. Assume f has an antiderivative F on D. Then F'(z) = f(2).
Consider the composite function F'(y(¢)), by the chain rule we have

& POM0) = FG0) /(1)
= So0) - ()
:/cf(z)dz
b
— [ sty
(lb d

- [ GPao)a

= [F(yt))
= F(y(b)) — F(v(a))
= F(Zg) — F(Zl)

Now assume C is a contour from point z; to z3. Then C = C; +Co + -+ - + Cp,

where C; is a smooth arc, for all 1 < i < n with parametric representation given
by 7; : [ai—1, a;] — C such that y1(ag) = 21, Yn(an) = 22. Now,

f(z)dz = F(a;) — F(a;—1)

C>

(b) = (c) Suppose that the integral of f(z) is independent of the contour in
D and it only depends on the endpoints of the contour. Let C be any closed
contour in D and let z; and z2 be any two distinct points on C. Form two paths
C1 and Cs from z; to zo. Since the values of the integral of f(z) is independent

18



of the contours, then [, f(2)dz = [, f(2)dz implies
0= f(z)dz— | f(z)dz
C1 Co

— [ ezt [ e
Cy —Ca

= / f(2)dz, where C = Cy + (—C3)
c
which shows that the integral of f(z) around closed contours lying in D is 0.
(c) = (a) Suppose integrals of f(z) around closed contours in D have a value

of 0. Let C; and Cy denote any two contours in D from point z; to a point zs.
Then C = C; + (Cz2) is a closed contour in D and by assumption,

Oz/cf(z)dz
- /cl+(c2) f(z)dz

= /C1 f(z)dz—&—/_c2 f(z)dz
= [ f(2)dz— | [f(z)dz
Cy Co

= | f(z)dz
Ci

= [ f(2)dz

Ca

Note that this shows (¢) = (b). Now fix any zp € D and define a function
F:D— Chby

F(z) = / f(s)ds, YzeD
20
The path independence of integrals imply that F' is well-defined.
Claim:

F'(z)=f(z) Vz€D

Let z + Az be any point distinct from z and lying in some neighborhood of z
that is small enough to be contained in D (such a neighborhood exists since D

19



is an open set).

z+Az z
Fle+ Az) — F(2) = / F(s)ds— | f(s)ds

= / :Zf(S)ds+ / HZZf(S)ds /z:f(S)ds

_ /Zz+Az f(a)ds

Which implies
F(z+ Az) — F(2) 1 /Z+AZ
N =5z [ s
_ LT fs)ds — f(2)Az
N Az
We have f;JrAz ds = [s]?T2% = (2 + Az) — 2z = Az, which gives us

F(z+A2) —F(z)  [77% f(s)ds — f(2) [772% ds

z

Az Az
z+Az
J. T (f(s) = f(2) ds
Az
Since f is continuous at z, then for any ¢ > 0 we may choose é > 0 such that,

if 0 < |Az| < 6, then |f(s) — f(2)| < € for all s on the line segment from z to
z 4+ Az. So, for 0 < |Az| < 0,

JEERA(f(s) — fL2)) ds
Az

F(z+ Az) — F(z) B
=T o) -

€|Az|
<
— Az

=€

By ML-estimate with M = ¢, L = Az, by assuming we are using a line from z

to z + Az,
F(z+4+ Az) — F(z)

/ _ s _
Fle)=fim=—x— -1
which proves the claim, and so proves (a). O

Green’s Theorem

Let C be a positively oriented, piecewise smooth simple closed curve that bounds
a domain D in the complex plane. Let P(x,y) and Q(z,y) be two real-valued
functions defined on an open set R that contains D, and suppose that P and @
have continuous first order partial derivatives on R, then

o= f] (%)
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Cauchy’s Theorem

Suppose that D is a simply connected domain, f : 0 — C is analytic in D, and
that f’ is continuous in D. Then, for every simple closed contour C in D,

/cf(z)dz =0

Proof:
The proof of this theorem follows immediately from Green’s Theorem in R? and
the Cauchy-Riemann equations. Recall:

/Cf(z)dz = /C(udx —vdy) + i/(vdm + udy)

[

Now we have assumed that f’ is continuous in D. As a consequence, the real
and imaginary parts of f(z) = uw + ‘v and their first partial derivatives are
continuous in D. By Green’s Theorem, we obtain

dv  du

_ — bk I I |
oo o= [ (-5
du dv

d dy = —— — — |dA
/c”“‘y //D( du dy>

Which implies

. du dv
“iff (‘dx‘dy) 4

Since f is analytic in D, the real and imaginary parts of f, u, and v respec-

tively, satisfy the C-R equations: 9% = 9% and Z—Z = —4 at every point in D.

dz du dz
Therefore,
/ f(z)dz=0
C

4.46.A (Cauchy-Goursat Theorem)

If a function f is analytic at all points interior to and on a simple closed contour

C,
/cf(z)dz =0

Proof:
See Sec. 4.47.
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4.48.A (Cauchy-Goursat Theorem Extended)

We can remove the ”simple” requirement of the contour in the original Cauchy-
Goursat Theorem by using simply connected domains. This a more general
version of the theorem since it allows the curve to cross itself.

If D is a simply connected domain and f : D — C is analytic in D, then

/Cf(z)dz =0

for any closed (not necessarily simple) contour C lying in D.

Proof:

Case 1: C is a simple closed contour.

If C is simple and closed then the region enclosed by C is contained in D, and
f is analytic in the region enclosed by C and on C. By the version of Cauchy-
Goursat in Theorem 4.46.A, we have [, f(z)dz = 0.

Case 2: C is not simple, but intersects itself a finite number of times.
Let C be such a contour in D. Subdivide C into a finite number of simple closed

contours. Then,

where each contour C; is simple and closed. Therefore,
/ f(x)dz=0, Vi
Ci
Z(il)/ f(z)dz=0
i Ci

hence [, f(z)dz = 0. O

Theorem 4.44.A

In a simple connected domain, any analytic function has an antiderivative, its
contour integrals are independent of the path, and its integrals over a closed
contour equal 0.

Theorem 4.49.A (Principle of Deformation of Contours)

Let C; and C; denote positively orient simple closed contours, where C; is interior
to Co. If a function f is analytic in the closed region consisting of those contours
and all points between them, then

Fedz= [ ()
Ca

C1
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This allows us to evaluate an integral over a complicated simple closed contour
C by replacing C with a contour C; that is more convenient.

For example, consider integrating over a function with a singularity. We can
obtain a general solution to these types of problems:

/ dz _J2m ifn=1
¢ (z—z)" 0 ifn#1
where zy € C is a constant interior to any simple closed contour C, and n € Z.

Cauchy-Goursat Theorem (for Multiply Connected Domains)

Let C be a simple closed contour within a domain D, and let C, where k =
1,2,...,n be disjoin simple closed contours interior to the contour C. If f(z) is
analytic at all points inside or on C, and outside or on each Cg, then

/Cf(z)dz = ; .. f(z)dz

Proof:

The idea is to use a crosscut between C and C,, Vk =1,2,...,n. This produces
a simply connected domain. Then as in the case of the doubly connected domain,
we have

/Cf(z)dz = kzz:l ., f(z)dz

Remarks 3

The Cauchy-Goursat Theorem gives only sufficient condition for the inte-
gral fc f(2)dz to be zero (namely, f is analytic inside C and on C). However,
in certain cases, [, f(z)dz = 0 even if f(z) is not analytic inside C and on C.
For example, f(z) = Z% is not analytic inside the contour

C:v(t)=Re", 0<2m,R>0

1
c <

Theorem 4.50.A (Cauchy’s Integral Formula)

yet,

Let f(z) be an analytic function in a simply connected domain D. If C is a
simple closed contour that lies inside D, and if 2y is a fixed point inside C, then

f(z0) = L /(z)

== dz
2mt Jo 2 — 2o
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Proof:

Let D be a simply connected domain, C a simple contour inside D, and zy an
interior point of C. Let C,. be a circle centered at zy and radius r small enough so
that C, lies within the interior of C. By the principle of deformation of contours,

we have
16 [ e,
c zZ— 20 C, zZ— 20

We want to show that the value of the integral on the RHS is 27if(z0). To do
this, we add and subtract the constant f(z¢) in the numerator of the integral:

/ f(z) = f(z20 +f(20)

zZ— 20

_ f(z (20) 1
_/CTZ_Z(] dz—|—f(zo)/CTZ_ZOdz

Now, let C, be parametrized by

C, Z*Zo

() = zo + 1, 0<t<2r

1 2 pjett m
/ = [ Porde= [ idr—2ni
c,. %~ zo o ret 0

= fG) /7f z—z( )dz+2mf(z0)

C, Z—ZO 0

Since f is continuous at zg, then for any € > 0 there exists a § > 0 such that
|f(2) — f(20)| < € whenever |z — z| < 0. In particular, if we choose the circle
C, to have a radius r = %(5 < 6, then by the ML-inequality, we have

— f(Zo)d E(27T7“) = 2me

zZ— 2 T

Thus the absolute value of the integral can be made arbitrarily small.

f(z) f(2) = f(20)
e z—zod = Z—izod +27T'Lf(ZO)
= /(z) dz — 2mif(20)
C, Z— 20
f(z) - f(Zo)dZ
zZ— 20
= ) dz — 27m'f(z0)‘
.2 ZO
Zo
zZ— 20
< 27r6
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Divide both sides by %,

1 (2)
— ——dz — <
21 Je, 2 — 2o 2= flz0)| <€
Since € is arbitrary,
1 f(2)
— ——dz — =0
21 Je, 2 — 2o 2= f(z)
Since
1 () g L [ ),
27 Je, 2 — 20 2 Jo 2 — 20
1 z
feo) = o= [ L g

2wt Jo 2 — 2o

Theorem 4.50.A (Cauchy’s Integral Formula - Version 2)

If f is analytic at all points within and on a simple closed contour C, and z is
any point interior to C, then

f(z0) = L Mdz

S 2mi Jo 2z — 20

Theorem (?)

Let f(z) and g(z) be two complex functions that are analytic inside and on a
simple closed contour C. If f(z) = g(z) for all z € C, then f(z) = g(z) for all z
interior to C.

Proof:
Let zg be a point inside C. Then, by Cauchy’s Integral Formula, we have

_ 1 f(z)
f(z0) = i ). z—zodz

o= o [ L

21t Jo 2 — 2o

Let v(t), a <t < b be a parametric representation of the contour C. Then,

G _ [ SO0

12—=20 Ja Y(t) =20

9(z) _ [* 9(r(®)
/JZ -2 /a V&) —z0 (£)dt
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But f(y(t)) = g(v(¢)) for all ¢ € [a,b], therefore

') g [P0
/a ) — 2 (t)dtf/a 7(t)_zoy(t)dt
) [ gz)
i/cfzodz_/czfzo
= 2mif(z9) = 2mig(zo)
= f(20) = 9(20)

Since zg is arbitrary, f(z) = g(z) for all z interior to C. O

Theorem 4.51.A (Cauchy’s Integral Formula for Derivatives

Suppose that f is analytic in a simply connected domain D and C is any simple
closed contour lying entirely inside D. Then for any point zq inside C, £ (z)

exists and | £2)
m(py= 2 [ JE) 4
F7(z0) 27Ti/c (z — zo)t! &

where n =0,1,2,3,....

Proof:
Let z be any point inside C, then by Cauchy’s Integral Formula we have
1
f(z) == ﬁds
2 Jo s — 2
then,

oy d< £(s) ds)

S 2midz \Jos—2

()
_ L [f<s)d< !

2mi Je dz s —=z

1 f(s)

T 2w Jo (s — 2)2

)| s

Differentiating again w.r.t. z gives us,

16 =g | (G

1 2f(s)
= omi Jo (s -2
O

T 2mi Jo (s — 2)?
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With repeated differentiation we see that

n n! f(s
f( )(Z)ZM/C(SZ))ans

Theorem (?77)

If f is analytic in a simple connected domain D, then f has derivatives of all
orders at every point z in D. Furthermore, f(™ for n =0,1,2,... are analytic
in D.

Proof:
If a function f(z) = u(z,y)+iv(x,y) is analytic in D, we have shown its deriva-
tives of all orders exists at any point z in D and so f’, f”,... are continuous.

F(2) = du dv dv du

T dx + Z% Cdy Zcly
v d% d2v Cd%u

" _au agv __agv L au
=) = dz? +de2 dydz Zdyclac

Thus the real functions u and v have continuous partial derivatives of all orders
and satisfy the C' — R equations at any point of D. Hence f(™(z) is analytic
forn=1,2,3,... and all z € D. O

Theorem (?777)

Let f(z) be analytic inside and on a simple closed contour C, then we have

1) [ D
e

c Z— 20 z — zg)"Hl
forn=1,2,3,....
Proof:
From CIF applied to g(z) = f(™)(z) for a fixed n € N, we have

) (n)(2)
F(z0) = 5= !

2mi Jo 2 — 2o
From CIFD applied to f(z) and n, we have

(s = f(2)
7 (z0) = 27Ti/c (z — zp)nt! dz
L[ ™), ol f(2)
Tm/c z— 2 dz = Tm/c (z—zo)”+1dz

IO N
= d—!/c( d

c Z— 20 z — zp)" T

dz
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Theorem 4.52.1

If a function f is analytic at a given point, then its derivatives of all orders are
analytic at that point too.

Proof:
See notes (pg. 170). O

Corollary 4.52.A

If f(z) = u(z,y) + iv(x,y) is analytic at a point zp = xo + iyo, then the real
and imaginary parts u(z,y) and v(z,y) have continuous partial derivatives of
all orders at (xq,yo)-

Proof:
See notes (pg. 172). O

Corollary 4.52.2 (Morera’s Theorem)

If f: D — Cis continuous in a domain D and [, f(z)dz = 0 for all closed
contours C in D, then f is analytic in D, and f(z) = F’(z) for some analytic
function F' on D.

Proof:
See notes (pg. 173). O

Theorem 7777

Let f: D — C be continuous in a simply connected domain and let C be closed
contour in D. Then a necessary and sufficient condition for f to be analytic in
D is that [, f(z)dz = 0.

Proof:
Excersise. O

Theorem 4.52.3 (Cauchy’s Inequality)

Suppose that a function f is analytic on and inside a circle Cr centered at point
zo with radius R. If M is the maximum value of |f(2)| on Cg, then for all n € N,
nI!M

Rn

£ (z0) | <

Proof:
See notes (pg. 175). O
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Theorem 4.53.1 (Liouville’s Theorem)

If f is entire and there is a constant M such that |f(z)| < M for all z € C, then
f is constant over the complex plane.

Proof:
See notes (pg. 176). O

Remarks 4

f(z) = sinz and f(z) = cosz are entire functions and therefore they are un-
bounded. This is in sharp to the bounded real functions f(x) = sinz and
f(z) = cosz.

Theorem 4.53.2 (Fundamental Theorem of Algebra)

Any nonconstant complex polynomial p(z) = ag + a1z + -+ + a,z", when
ag, a1, --.,a, € C and of degree n > 1, has at least one zero. That is, there
exists at least one point zg € C such that p(z9) = 0.

Proof:
See notes (pg. 178). O

Remarks 5

Consider a polynomial p(z) of degree n > 1 with complex coefficients. By
the Fundamental Theorem of Algebra, p(z) has a zero, say z; € C. So by
the Factor Theorem, p(z) = (2 — 21)q1(2) for some complex polynomial ¢;(z)
of degree n — 1. We can repeat this argument with ¢;(z) and obtain p(z) =
(z — z1)(z — 22)q2(2), and so forth. Then we can factor p(z) into linear factors
of the form p(z) = ¢(z — 21)(z — 22) ... (2 — zp,), where ¢ is a nonzero complex
number and 21, ..., 2, € C (2;’s might not be distinct).
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