MA 734 Exam 2 Review

Cameron Hayes

28 March 2023

Definitions

Periodic in D

Let w = f(z) be a single-valued function defined in the domain D of the complex plane, and let $\lambda \neq 0$ be a constant complex number. Suppose that for every $z \in D$, $z + \lambda \in D$. The function f(z) is said to be **periodic in D**, if for all $z \in D$, $f(z + \lambda) = f(z)$.

Example: Since $e^{z+2\pi i} = e^z e^{2\pi i} = e^z (\cos 2\pi + i \sin 2\pi) = e^z \quad \forall z \in \mathbb{C}, e^z$ is periodic in \mathbb{C} .

Fundamental Period

We call the complex number $\lambda = 2\pi i$ the **fundamental period** of the function e^z in the sense that any other period w of e^z must be of the form $2\pi ki$, where $k \in \mathbb{Z} \setminus \{0\}$. Example: Since $e^{z+2\pi i} = e^z e^{2\pi i} = e^z (\cos 2\pi + i \sin 2\pi) = e^z \quad \forall z \in \mathbb{C}, e^z$ is

(Principle) Logarithm

periodic in \mathbb{C} .

Let $z \neq 0, z \in \mathbb{C}$. If $w \in \mathbb{C}$ and $e^w = z$, then w is called a **logarithm** of z where $w = \log z$. This is a **set-valued** function where

 $w = \log z = \{ \ln |z| + i \operatorname{Arg} z + 2n\pi i \mid n \in \mathbb{Z} \}, \text{ for } -\pi < \operatorname{Arg} z \le \pi$

Note that $w = ln|z| + i \operatorname{Arg} z$, that is n = 0, is called the **principle logarithm** and is denoted by $\operatorname{Log} z = \ln |z| + i \operatorname{Arg} z$.

(Principle) Branch

A **branch** is a restricted range of a multi-valued function w = f(z) over which there is a single value w for each z and for which f(z) is continuous. If the branch's range is restricted to the principle values, we call it the **principle branch** of the function.

Branch Cut

A **branch cut** of a multi-valued function is a curve in the complex plane across which the function is discontinuous. A branch cut is used to separate a multi-valued function into single-valued and continuous parts (branches).

Branch Point

The point z_0 is called a **branch point** of a complex multi-valued function f(z) if it is shared by multiple branch cuts of the function.

Complex Exponent

If $z \neq 0$ and $c \in \mathbb{C}$, we define z^c by

$$z^c = e^{c \log z}$$

where $\log z$ is the multi-valued logarithm of z. The principle value of z^c is defined by

$$z^c = e^{c \operatorname{Log} c}$$

Trigonometric Functions

For all $z \in \mathbb{C}$:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
$$\frac{d}{dz}(\cos z) = \frac{d}{dz}\left(\frac{e^{iz} + e^{-iz}}{2}\right) = -\sin z$$
$$\frac{d}{dz}(\sin z) = \frac{d}{dz}\left(\frac{e^{-iz} - e^{iz}}{2i}\right) = \cos z$$

Not that all trig. identities involving sin and cos over $\mathbb R$ hold over to $\mathbb C$ (see Theorem. 2.27.A).

Inverse Trigonometric Functions

For all $z \in \mathbb{C}$:

$$\sin^{-1} z = -i \log \left[iz + (1 - z^2)^{\frac{1}{2}} \right]$$
$$\cos^{-1} z = -i \log \left[z + i(1 - z^2)^{\frac{1}{2}} \right]$$
$$\tan^{-1} z = (\frac{i}{2}) \log \left(\frac{i+z}{i-z} \right)$$

Given these are defined in terms of logarithms and square roots, all these functions are multi-valued.

If a specific branch is chosen for these functions, they become analytic and have the following derivatives:

$$\frac{d}{dz}(\sin^{-1}z) = \frac{1}{\sqrt{1-z^2}}$$
$$\frac{d}{dz}(\cos^{-1}z) = -\frac{1}{\sqrt{1-z^2}}$$
$$\frac{d}{dz}(\tan^{-1}z) = \frac{1}{1-z^2}$$

Derivatives of Functions w(t)

Consider a complex valued function of a single real variable t. For $t \in [a, b]$,

$$w(t) = U(t) + iv(t)$$

Define w'(t) as

$$w'(t) = \lim_{\Delta t \to 0} \frac{w(t + \Delta t) - w(t)}{\Delta t}$$
$$= u'(t) + iv'(t)$$

provided all the derivatives exists.

Definite Integrals of Functions w(t)

For $w(t) = u(t) + iv(t), t \in [a, b]$ we define the integral of w(t) over [a, b] as

$$\int_{a}^{b} w(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt$$

provided the integrals on the RHS exist. Now, if w(t) = u(t) + iv(t) and W(t) = U(t) + V(t) are continuous on the interval [a, b] and W'(t) = w(t) $\forall t \in [a, b]$, then

$$\int_{a}^{b} w(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt$$

= $[U(t)]_{a}^{b} + i[V(t)]_{a}^{b}$
= $(U(b) + iV(b)) - (U(a) + iV(a))$
= $W(b) - W(a)$

Note that the Mean Value Theorem does not hold for complex integrals.

Arcs, Curves, and Contours

1. A continuous function of a real variable $t, \gamma : [a, b] \subset \mathbb{R} \to \mathbb{C}$ is called an **arc**. We can express $\gamma(t)$ as

$$\gamma(t) = x(t) + iy(t)]$$

for $t \in [a, b]$, where x(t) and y(t) are real valued functions and are called the real and imaginary parts of γ . We denote the arc $\gamma(t)$ by \mathcal{C} .

- 2. We say arc $C : \gamma(t)$ for $t \in [a, b]$ is simple if γ is injective (i.e. the curve does not cross itself.
- 3. A closed curve is an arc $\gamma : [a, b] \to \mathbb{C}$ such that $\gamma(a) = \gamma(b)$.
- 4. A closed curve $\gamma : [a, b] \to \mathbb{C}$ is said to be simple when γ is injective on the open interval (a, b) (it is a simple closed curve).
- 5. We say $\gamma : [a, b] \to \mathbb{C}$ is a **differentiable arc** when γ' is defined and continuous on [a, b]. If we *additionally* have that $z'(t) \neq 0$ for all $t \in (a, b)$, then we say γ is a **smooth arc**.
- 6. If C is the arc $\gamma : [a, b] \to \mathbb{C}$, then we write -C for the arc that we denote by $\gamma^- : [-b, -a] \to \mathbb{C}$ and that is given by

$$\gamma^{-}(t) = \gamma(-t)$$

for $-b \leq t \leq -a$. Put simply, this is the same arc as γ , but traversed backwards. We call $-\mathcal{C}$ the **opposite arc** of \mathcal{C} .

Alternative definition: We may define γ^- as

$$\gamma^-: [0,1] \to \mathbb{C}$$
, where
 $\gamma^-(t) = \gamma(0+1-t) = \gamma(1-t)$

Note that in this case, $\gamma^{-}(0) = \gamma(1) = i$ and $\gamma^{-}(1) = \gamma(0) = 1$.

7. A **contour** is a piecewise smooth arc. Simply put, a contour is an arc that is created by placing finitely many smooth arcs end to end. As a function, this is defined as $\gamma : [a, b] \to \mathbb{C}$ where

$$\gamma(t) = \begin{cases} \gamma_1(t) & \text{if } a = a_0 \le t \le a_1 \\ \gamma_2(t) & \text{if } a = a_1 \le t \le a_2 \\ \vdots \\ \gamma_n(t) & \text{if } a = a_{n-1} \le t \le a_n = b \end{cases}$$

where $a = a_0 < a_1 < \dots < a_{n-1} < a_n = b$, and

$$\gamma_1(a_1) = \gamma_2(a_2), \dots, \gamma_{n-1}(a_{n-1}) = \gamma_n(a_{n-1})$$

We call $\gamma_1, \gamma_2, \ldots, \gamma_n$ parametrizations of smooth arcs C_1, C_2, \ldots, C_n . In this case we write

$$\mathcal{C} = \mathcal{C}_1 + \mathcal{C}_2 + \dots + \mathcal{C}_r$$

Note: There is no unique parametrization for a contour C.

Curve Orientation

A simple closed curve is said to be **positively oriented** when it is traced out in a counter-clockwise direction as t ranges from a to b.

It is said to be **negatively oriented** when it is traced out in a clockwise direction as t ranges from a to b.

Reparametrizations

Let $\gamma : [a, b] \to \mathbb{C}$ be a curve. A curve $\tilde{\gamma} : [\alpha, \beta] \to \mathbb{C}$ is called a **reparametriza**tion of γ if there is a \mathcal{C}^1 function $\varphi : [a, b] \to [\alpha, \beta]$ with $\varphi'(t) > 0$, $\varphi(a) = \alpha$, and $\varphi(b) = \beta$ such that

$$\gamma(t) = (\widetilde{\gamma} \circ \varphi)(t) = \widetilde{\gamma}(\varphi(t))$$

That is to say, there is **no unique parametrization** for a contour. Note that the contour integral and arc length of a complex valued function is independent of the parametrization of the contour we integrate over.

Contour Integral

Suppose $f: D \to \mathbb{C}$ is a complex valued function, where $D \subset \mathbb{C}$. Let \mathcal{C} be an arc given by the function $\gamma: [a, b] \to D$ in D. f is said to be continuous on arc \mathcal{C} if the function $\varphi(t) = (f \circ \gamma)(t)$ is continuous on [a, b]. In this case, the integral of f(z) along the arc \mathcal{C} is denoted by $\int_{\gamma} f(z) dz$ and it is defined by

$$\int_{\gamma} f(z)dz = \int_{a}^{b} (f \circ \gamma)(t)\gamma'(t)dt$$
$$= \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

where the integral on the right hand side is the Riemann integral of a real variable t.

Initial & Terminal Points

Suppose that $a = a_1 < b_1 = a_2 < b_2, \dots = a_k < b_k = b$ are real numbers, and that for every $j = 1, 2, \dots, k$, C_j is an arc given by $\gamma_j : [a_j, b_j] \to D \subset \mathbb{C}$. Suppose further that $\gamma_j(b_j) = \gamma_{j+1}(a_{j+1} \text{ for every } j = 1, \dots, k-1)$. Then, $\mathcal{C} = \mathcal{C}_1 + \mathcal{C}_2 + \dots + \mathcal{C}_k$ is called a contour. The point $\gamma_1(a_1)$ is called the **initial** **point** of the contour C, and the point $\gamma_k(b_k)$ is called the **terminal point** of the counter C. A complex valued function $f: D \to \mathbb{C}$ is said to be **continuous** on **the contour** C if it is continuous on the arc C_j for every j = 1, 2, ..., k. In this case, the integral of f along C is defined by

$$\int_{\mathcal{C}} f = \int_{\mathcal{C}_1} f + \int_{\mathcal{C}_2} f + \dots + \int_{\mathcal{C}_k} f$$

Simply Connected Domains

Informally, **simply connected domain** is an open connected set with "no holes." An extension of Cauchy-Goursat tells us that the integral of a function that is analytic over a simply connected domain is 0 for all closed contours in the domain.

A more formal definition follows: A simply connected domain D is a domain such that every simple contour in the domain encloses only points in D. Another way to view this is that a domain is simply connected if any simple closed contour C lying entirely in D can be shrunk to a point without leaving D.

Multiply Connected Domain

A domain that is not simply connected is called a **multiply connected domain**. Thus a multiply connected domain has "holes" in it.

Theorems

3.29.A

If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are two complex numbers, then $e^{z_1}e^{z_2} = e^{z_1+z_2}$. Note if $z_1 = z$ and $z_2 = -z$, then $e^z \cdot e^{-z} = e^0 = 1$, therefore $e^{-z} = \frac{1}{e^z}$.

Proof:

$$e^{z_1}e^{z_2} = e^{x_1}(\cos y_1 + i\sin y_1) \cdot e^{x_2}(\cos y_2 + i\sin y_2)$$

= $e^{x_1 + x_2}[(\cos y_1 \cos y_2 - \sin y_2 \sin y_2)$
+ $i(\sin y_1 \cos y_2 + \sin y_2 \cos y_2)]$
= $e^{x_1 + x_2}(\cos y_1 + y_2 + i\sin y_1 + y_2)$
= $e^{z_1 + z_2}$

3.29.1

(a) $\forall z \in \mathbb{C}, e^z \neq 0.$

- (b) $|e^{iy}| = 1$ and $|e^z| = e^x \quad \forall z = x + iy \in \mathbb{C}$.
- (c) A necessary and sufficient condition that $e^z = 1$ is $z = 2\pi ki, k \in \mathbb{Z}$.
- (d) For $z_1, z_2 \in \mathbb{C}$, we have $e^{z_1} = e^{z_2}$ if and only if $z_1 = z_2 \pmod{2\pi i}$.

Proof:

(a) By Lemma 3.29.A we have:

$$e^{z}e^{-z} = e^{z+(-z)} = e^{0} = 1$$

Since the product is never zero, neither factor can be zero. Therefore, $e^z \neq 0$.

(b)

$$e^{iy} = \cos y + i \sin y$$
$$|e^{iy}| = \sqrt{\cos^2 y + \sin^2 y} = 1$$

It follows,

$$|e^{z}| = |e^{x}e^{iy}| = |e^{x}||e^{iy}| = |e^{x}| = e^{x}$$

(c) Suppose that $e^z = 1$. Thus $e^z = e^x \cos y + ie^x \sin y = 1 + 0i$. This implies $e^x \cos y = 1$ and $e^x \sin y = 0$. Since $e^x \neq 0 \Rightarrow \sin y = 0 \Rightarrow y = n\pi$ for some $n \in \mathbb{Z}$. But $\cos n\pi = (-1)^n$. Since $e^x > 0$ we see that $e^x (-1)^n = 1$ only if x = 0 and n = 2k for some $k \in \mathbb{Z}$. Thus $z = x + iy = 0 + in\pi = 2\pi ki$. Conversely, assume that $z = 2\pi ki$, where $k \in \mathbb{Z}$. Then by the definition

Conversely, assume that $z = 2\pi ki$, where $k \in \mathbb{Z}$. Then by the definition of the exponential function,

$$e^z = e^{2\pi ki} = \cos 2\pi k + i \sin 2\pi k = 1$$

(d) $e^{z_1} = e^{z_2}$ if and only if $\frac{e^{z_1}}{e^{z_2}} = 1$. $\Rightarrow e^{z_1 - z_2} = 1 \iff z_1 - z_2 = 2\pi ki$ $\Rightarrow z_1 \equiv z_2 \pmod{2\pi i}$

Claim 1

The exponential function defined for every $z \in R_0$ by $f(z) = e^z$ is a bijection.

Proof:

Assume for $z_1, z_2 \in R_0$ we have

$$e^{z_1} = e^{z_2} \Rightarrow z_1 \equiv z_2 \pmod{2\pi i}$$

 $\Rightarrow z_1 - z_2 = 2\pi k i$

for some $k \in \mathbb{Z}$. But since $z_1, z_2 \in R_0$, if $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then

$$-\pi < y_1, y_2 \le \pi \Rightarrow -2\pi < y_1 - y_2 < 2\pi$$
$$\Rightarrow k = 0$$
$$\Rightarrow z_1 = z_2$$

Therefore, f(z) is one-to-one.

To show $f(z) = e^z$ is onto, let $w = e^z$, where $w \neq 0$ is given, and z = x + iy be unknown.

$$|w| = e^x \Rightarrow x = \ln |w|$$

arg $w = y + 2\pi k$ or $y = \arg w$

Obviously, there are infinitely many values of w, since $\arg w$ takes infinitely many values, all differing by integer multiples of 2π . Exactly, one of these values corresponds to a unique $z \in R_0$.

3.29.2

The exponential function $f(z) = e^z$ is analytic for all $z \in \mathbb{C}$. Moreover, $f'(z) = e^z$.

Proof:

Let $f(z) = e^z = u(x, y) + iv(x, y)$. This implies $f(z) = e^x \cos y + ie^x \sin y \Rightarrow u(x, y) = e^x \cos y, v(x, y) = e^x \sin y$. So,

$$\frac{du}{dx} = e^x \cos y$$
$$\frac{du}{dy} = -e^x \sin y$$
$$\frac{dv}{dx} = e^x \sin y$$
$$\frac{dv}{dy} = e^x \cos y$$

Hence, $\frac{du}{dx} = \frac{dv}{dy}$ and $\frac{du}{dy} = -\frac{dv}{dx}$. Thus u and v satisfy the C-R equations and since these partial derivatives are continuous $\forall (x, y) \in \mathbb{R}^2$, then $f(z) = e^z$ is analytic $\forall z \in \mathbb{C}$. Moreover,

$$f'(z) = \frac{du}{dx} + i\frac{dv}{x}$$
$$= e^x \cos y + ie^x \sin y$$
$$= e^z$$

3.30.1

For any complex number $z \neq 0$, there exists some complex numbers w such that $e^w = z$. In particular, one such w is the complex number Log z, defined as

$$\log z = \ln |z| + i \operatorname{Arg} z$$

This is called the **principle log**. Other values of w are given by $\{\ln |z| + i \operatorname{Arg} z + 2n\pi i \mid n \in \mathbb{Z}\}$ which is denoted by $\log z$.

Proof:

Writing z = x + iy in polar exponential form: $z = re^{i\theta}$, where $r = |z| = \sqrt{x^2 + y^2}$ and $\theta = \operatorname{Arg} z$ for $-\pi < \theta \leq \pi$. Now, observe that

$$e^{\ln |z| + i \operatorname{Arg} z} = e^{\ln |z|} \cdot e^{i \operatorname{Arg} z}$$
$$= |z|e^{i\theta}$$
$$= z$$

Hence, $w = \ln |z| + i \operatorname{Arg} z$ is a solution of the equation $e^w = z$. Now suppose that w_1 is another solution of $e^w = z$. Then,

$$e^{w_1} = e^w = z$$

$$\Rightarrow e^{w_1 - w} = 1$$

$$\Rightarrow w_1 = w \pmod{2\pi i}$$

$$\Rightarrow w_1 - w = 2n\pi i, \text{ for some } n \in \mathbb{Z}$$

$$\Rightarrow w_1 = w + 2n\pi i$$

$$\Rightarrow w_1 \in \{\ln|z| + i \operatorname{Arg} z + 2n\pi i \mid n \in \mathbb{Z}\}$$

			L
			I
	-	-	J

Remarks 1

Fix $\alpha \in \mathbb{R}$ and define

$$\log z = \ln r + i\theta$$

where $z = re^{i\theta}$, r > 0, $\alpha < \theta < \alpha + 2\pi$. This defines a branch of the logarithm with a branch cut $\theta = \alpha$.

- 1. The function $z \mapsto \log z$ is analytic.
- 2. When $\alpha = -\pi$, we call $\log z$ the principle branch of the logarithm and we denote it by $\log z$.
- 3. Let $\log z$ be any branch of the logarithm. Then,

$$\frac{d}{dz}(\log z) = \frac{1}{z}$$

Proof:

1. $f(z) = \log z = \ln r + i\theta$ implies

$$u(r,\theta) = \ln r, v(r,\theta) = \theta$$
$$\frac{du}{dr} = \frac{1}{r}, \frac{du}{d\theta} = 0$$
$$\frac{dv}{dr} = 0, \frac{dv}{d\theta} = 1$$

The C-R equations in polar coordinates

$$\frac{du}{dr} = \frac{1}{r} = \frac{1}{r}\frac{dv}{d\theta} = \frac{1}{r}\cdot 1$$
$$\frac{dv}{dr} = 0 = -\frac{1}{v}\frac{du}{d\theta} = (-\frac{1}{r})(0)$$

are satisfied. Moreover $\frac{du}{dr}, \frac{du}{d\theta}, \frac{dv}{dr}$, and $\frac{dv}{d\theta}$ are continuous. Therefore $f(z) = \log z$ is analytic.

- 2. Not necessary.
- 3. We have $e^{\log z} = z$. This implies

$$\frac{d}{dz}(e^{\log z}) = \frac{d}{dz}(z)$$
$$e^{\log z}\frac{d}{dz}(\log z) = z\frac{d}{dz}(\log z) = 1$$
So, $\frac{d}{dz}(\log z) = \frac{1}{z}$.

3.32.A

For the set-valued (or multi-valued) logarithm, we have for all nonzero $z_1, z_2 \in \mathbb{C}$:

$$\log z_1 z_2 = \log z_1 + \log z_2$$

Note that the left and right sides represent infinite sets (same goes for 3.32.B and 3.32.C).

Proof:

By definition, $\log z = \ln |z| + i \arg z$, and by Lemma 1.8.1 $\arg z_1 z_2 = \arg z_1 + \arg z_2$, then

$$\log z_1 z_2 = \ln |z_1 z_2| + i \arg z_1 z_2$$

= $\ln |z_1| + \ln |z_2| + i \arg z_1 + i \arg z_2$
= $(\ln |z_1| + i \arg z_1) + (\ln |z_2| + i \arg z_2)$
= $\log z_1 + \log z_2$

3.32.B

For the set-valued (or multi-valued) logarithm, we have for all nonzero $z_1, z_2 \in \mathbb{C}$:

$$\log \frac{z_1}{z_2} = \log z_1 - \log z_2$$

Proof:

$$\log \frac{z_1}{z_2} = \ln \left| \frac{z_1}{z_2} \right| + i \arg \frac{z_1}{z_2}$$

= $\ln |z_1| - \ln |z_2| + i \arg z_1 - i \arg z_2$
= $(\ln |z_1| + i \arg z_1) - (\ln |z_2| + i \arg z_2)$
= $\log z_1 - \log z_2$

3.32.C

If $z \in \mathbb{C}$ is nonzero and n is an integer, then $\log z^n = n \log z$.

Proof:

$$\log z^n = \ln |z^n| + i \arg z^n$$
$$= n \ln |z| + i n \arg z$$
$$= n(\ln |z| + i \arg z)$$
$$= n \log z$$

_	۰.

3.32.D

(a) For any nonzero $z \in \mathbb{C}$ and $n \in \mathbb{Z}$:

 $z^n = e^{n \log z}$

(b) Let n be a positive intger, and let $z \in \mathbb{C} \setminus \{0\}$:

$$z^{\frac{1}{n}} = e^{\frac{1}{n}\log z}$$

Proof:

(a) Write $z = re^{i\theta}$, where r > 0 and $\theta \in \mathbb{R}$. Then $z^n = r^n e^{in\theta}$. For $k \in \mathbb{Z}$:

$$e^{n \log z} = e^{n(\ln r + i\theta + 2\pi k)}$$

= $e^{n \ln r + i(n\theta + 2\pi kn)}$
= $e^{n \ln r} \cdot e^{i(n\theta + 2\pi kn)}$
= $e^{n \ln r} [\cos (n\theta + 2\pi kn) + i \sin (n\theta + 2\pi kn)]$
= $e^{\ln r^n} (\cos n\theta + i \sin n\theta)$
= $r^n e^{in\theta}$
= z^n

(b) Write
$$z = re^{i\theta}, r > 0, \theta \in \mathbb{R}$$
. For $k \in \mathbb{Z}$:

$$e^{\frac{1}{n}\log z} = e^{\frac{1}{n}(\ln r + i(\theta + 2\pi k))}$$

$$= e^{\frac{1}{n}\ln r} \cdot e^{i(\frac{\theta}{n} + \frac{2\pi k}{n})}$$

$$= e^{\ln r^{\frac{1}{n}}} \cdot e^{i(\frac{\theta}{n} + \frac{2\pi k}{n})}$$

$$= \sqrt[n]{r}e^{i(\frac{\theta}{n} + \frac{2\pi k}{n})}, k \in \{0, 1, 2, \dots, n-1\}$$

$$= z^{\frac{1}{n}}$$

3.32.D Corollary

For any $z \in \mathbb{C} \setminus \{0\}, m, n \in \mathbb{Z}, n > 0$:

$$z^{\frac{m}{n}} = e^{\left(\frac{m}{n}\right)\log z}$$

Remarks 2

- 1. z^c is single-valued when c is a real integer.
- 2. z^c takes finitely many values when c is a real rational number.
- 3. z^c takes infinitely many values in all other cases.

Properties of Complex Exponents

Let $z \neq 0$, α , and β be complex numbers. Then:

1. $z^{\alpha} \cdot z^{\beta} = z^{\alpha+\beta}$ 2. $\frac{z^{\alpha}}{z^{\beta}} = z^{\alpha-\beta}$ 3. $(z^{\alpha})^n = z^{n\alpha}, n \in \mathbb{Z}$ 4. $(z_1 \cdot z_2)^{\alpha} \neq z_1^{\alpha} \cdot z_2^{\alpha}$ (in general) 5. $(z^{\alpha})^{\beta} \neq z^{\alpha\beta}$ (in general)

Proof:

1.

$$z^{\alpha} \cdot z^{\beta} = e^{\alpha \log z} \cdot e^{\beta \log z}$$
$$= e^{\alpha \log z + \beta \log z}$$
$$= e^{(\alpha + \beta) \log z}$$
$$= z^{\alpha + \beta}$$

2. By (1) we have $z^{\alpha-\beta} \cdot z^{\beta} = z^{(\alpha-\beta)+\beta} = z^{\alpha}$. Divide both sides by z^{β} :

$$z^{\alpha-\beta} = \frac{z^{\alpha}}{z^{\beta}}$$

3.

$$(z^{\alpha})^n = (e^{\alpha \log z})^n = e^{(n\alpha) \log z} = z^{n\alpha}$$

4. Think of an example

5. Consider
$$z = i, \alpha = 4, \beta = \frac{1}{2}$$
.

Jordan Curve Theorem

If S is the range of a simple closed curve in the complex plane \mathbb{C} , then the complement $\mathbb{C} \setminus S$ is the union of two disjoint domains, one g which is bounded and the other of which is unbounded.

Proof:

Here be dragons!

Properties of Complex Integrals

- 1. The integral $\int_{\mathcal{C}} f(z) dz$ is a special type of line integral.
- 2. The following two properties imply integration of complex functions along an arc is a linear operation:

$$\int_{\mathcal{C}} \left(f(z) + g(z) \right) dz = \int_{\mathcal{C}} f(z) dz + \int_{\mathcal{C}} g(z) dz$$
$$\int_{\mathcal{C}} cf(z) dz = c \int_{\mathcal{C}} f(z) dz, \text{ where } c \in \mathbb{C} \text{ is a constant}$$

- 3. $\int_{-\mathcal{C}} f(z) dz = -\int_{\mathcal{C}} f(z) dz$
- 4. If $\tilde{\gamma}$ is a reparametrization of γ , then

$$\int_{\gamma} f(z) dz = \int_{\widetilde{\gamma}} f(z) dz$$

for any continuous f defined on an open set containing the image of $\gamma =$ image of $\widetilde{\gamma}.$

5. Given a contour C such that $C = C_1 + C_2 + \cdots + C_k$, and a function f that is continuous along the contour,

$$\int_{\mathcal{C}} f = \int_{\mathcal{C}_1} f + \int_{\mathcal{C}_2} f + \dots + \int_{\mathcal{C}_k} f$$

Proof:

1. Let $C: \gamma(t) = x(t) + iy(t)$, where $a \le t \le b$. And let f(z) = u(x, y) + iv(x, y), where z = x + iy.

$$\begin{split} \int_{\mathcal{C}} f(z)dz &= \int_{a}^{b} f(\gamma(t))\gamma'(t)dt \\ &= \int_{a}^{b} (u(\gamma(t)) + iv(\gamma(t)))\gamma'(t)dt \\ &= \int_{a}^{b} (u(\gamma(t)) + iv(\gamma(t)))(x'(t) + iy'(t))dt \\ &= \int_{a}^{b} [u(x(t), y(t))x'(t) + u(x(t), y(t))y'(t)] dt \\ &= \int_{a}^{b} \left[u(x(t), y(t))\frac{dx}{dt} \right] dt - \int_{a}^{b} \left[v(x(t), y(t))\frac{dy}{dt} \right] dt \\ &+ i \int_{a}^{b} \left[v(x(t), y(t))\frac{dx}{dt} \right] dt + i \int_{a}^{b} \left[u(x(t), y(t))\frac{dy}{dt} \right] dt \\ &= \int_{a}^{b} u dx - \int_{a}^{b} v dy + i \int_{a}^{b} v dx + i \int_{a}^{b} u dy \\ &= \int_{\mathcal{C}} u dx - v dy + i \int_{\mathcal{C}} v dx + u dy \end{split}$$

2. Exercise.

3. Let \mathcal{C} be given by $\gamma : [a, b] \to D$, then the opposite arc $-\mathcal{C}$ is given by $\gamma^- : [a, b] \to \mathbb{C}$ and defined by

$$\gamma^{-}(t) = \gamma(a+b-t), t \in [a,b]$$

Now,

$$\int_{-\mathcal{C}} f(z)dz = \int_{\gamma^-} f(z)dz$$
$$= \int_a^b (f \circ \gamma^-) (t) (\gamma^-(t))' dt$$
$$= \int_a^b f (\gamma(a+b-t)) \frac{d}{dt} (\gamma(a+b-t)) dt$$
$$= \int_a^b f (\gamma(a+b-t)) \gamma'(a+b-t)(-1) dt$$
$$= -\int_a^b f (\gamma(a+b-t)) \gamma'(a+b-t) dt$$

Substituting u = a + b - t we obtain

$$-\int_{b}^{a} f(\gamma(u)) \gamma'(u)(-du) = \int_{b}^{a} f(\gamma(u)) \gamma'(u) du$$
$$= -\int_{a}^{b} (f(\gamma(u)) \gamma'(u) du$$
$$= -\int_{\gamma} f(z) dz$$

Hence $\int_{-\mathcal{C}} f(z) dz = -\int_{\mathcal{C}} f(z) dz$.

4. Let $\gamma : [a, b] \to 0$ be a smooth arc, and let $\tilde{\gamma} : [\alpha, \beta] \to D$ be a reparametrization of γ . Thus there is a \mathcal{C}^1 -function $\varphi : [a, b] \to [\alpha, \beta]$ with $\varphi'(t) > 0$, $\varphi(a) = \alpha$, and $\varphi(b) = \beta$ such that $\gamma(t) = \tilde{\gamma}(\varphi(t))$.

$$\int_{\gamma} f = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt$$

By the chain rule,

$$\gamma'(t) = \frac{d}{dt} \left[\widetilde{\gamma}(\varphi(t)) \right] = \widetilde{\gamma}'(\varphi(t)) \cdot \varphi'(t)$$

Let $u = \varphi(t)$ be a new variable so that $u = \alpha = \varphi(a)$ and $u = \beta = \varphi(b)$. Then,

$$\begin{split} \int_{a}^{b} f\left(\gamma(t)\right) \gamma'(t) dt &= \int_{a}^{b} f\left(\widetilde{\gamma}(\varphi(t))\right) \widetilde{\gamma}'(\varphi(t)) \frac{du}{dt} dt \\ &= \int_{\alpha}^{\beta} f\left(\widetilde{\gamma}(u)\right) \widetilde{\gamma}'(u) du \\ &= \int_{\widetilde{\gamma}} f \end{split}$$

subsection*4.43.A If $w : [a, b] \to \mathbb{C}$ is a piecewise continuous complex valued function in the real closed interval [a, b], then

$$\left| \int_{a}^{b} w(t) dt \right| \leq \int_{a}^{b} |w(t)| dt$$

Proof: Let $I = \left| \int_{a}^{b} w(t) dt \right|$. If I = 0, then clearly

$$0 = \left| \int_{a}^{b} w(t) dt \right| \le \int_{a}^{b} |w(t)| dt$$

If I > 0, then there exists a real number θ such that

$$\int_{a}^{b} w(t)dt = Ie^{i\theta}$$

Which implies

$$I = e^{-i\theta} \int_{a}^{b} w(t)dt$$

= $\int_{a}^{b} e^{-i\theta}w(t)dt$
= $\int_{a}^{b} \operatorname{Re}(e^{-i\theta}w(t))dt + i \int_{a}^{b} \operatorname{Im}(e^{-i\theta}w(t))dt$

Since $I = \left| \int_{a}^{b} w(t) dt \right|$ is a real number, then $\int_{a}^{b} \operatorname{Im}(e^{-i\theta}w(t)) dt = 0$. Hence, $I = \int_{a}^{b} \operatorname{Re}(e^{-i\theta}w(t)) dt$. On the other hand, clearly

$$\operatorname{Re}(e^{-i\theta}w(t)) \le \left|e^{-i\theta}w(t)\right| = |w(t)|$$

for all $t \in [a, b]$. Thus,

$$I = \int_{a}^{b} \operatorname{Re}\left(e^{-i\theta}w(t)\right) dt$$
$$\leq \int_{a}^{b} |w(t)| dt.$$

That is to say,

$$\left| \int_{a}^{b} w(t) dt \right| \leq \int_{a}^{b} |w(t)| dt.$$

4.43.1

Let C be a contour of length L, and suppose that f is a piecewise continuous function on C. If $M \ge 0$ is a constant such that $|f(z)| \le M$ for all $z \in C$, then $|\int_{C} f(z)dz| \le ML$.

Proof:

WLOG we may assume that \mathcal{C} is a smooth arc given by the function $\gamma : [a, b] \to \mathbb{C}$. Then,

$$\begin{split} \left| \int_{\mathcal{C}} f(z) dz \right| &= \left| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \right| \\ &\leq \int_{a}^{b} \left| f(\gamma(t)) \gamma'(t) \right| dt \\ &\leq \int_{a}^{b} \left| f(\gamma(t)) \right| \left| \gamma'(t) \right| dt \\ &\leq \int_{a}^{b} M \left| \gamma'(t) \right| dt \\ &= M \int_{a}^{b} \left| \gamma'(t) \right| dt \\ &= ML \end{split}$$

С		-
L		
L		
L		
L		

4.44.A

Let f be a continuous complex-valued function on the domain $D \subset \mathbb{C}$. Then the following statements are equivalent:

- (a) The function f has an antiderivative on D.
- (b) For any $z_1, z_2 \in D$ and contours \mathcal{C}_1 and \mathcal{C}_2 in D from z_1 to z_2 ,

$$\int_{\mathcal{C}_1} f(z)dz = \int_{\mathcal{C}_2} f(z)dz$$

(c) For every closed contour C in D,

$$\int_{\mathcal{C}} f(z) dz = 0$$

Proof:

(a) \Rightarrow (b) First, we assume C is a smooth arc from z_1 to z_2 parametrized by

 $\gamma : [a,b] \to \mathbb{C}$. Assume f has an antiderivative F on D. Then F'(z) = f(z). Consider the composite function $F(\gamma(t))$, by the chain rule we have

$$\begin{aligned} \frac{d}{dt} \left(F(\gamma(t)) \right) &= F'(\gamma(t)) \cdot \gamma'(t) \\ &= f(\gamma(t)) \cdot \gamma'(t) \\ &\Rightarrow \int_{\mathcal{C}} f(z) dz \\ &= \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \\ &= \int_{a}^{b} \frac{d}{dt} \left(F(\gamma(t)) \right) dt \\ &= [F(\gamma(t))]_{a}^{b} \\ &= F(\gamma(b)) - F(\gamma(a)) \\ &= F(z_{2}) - F(z_{1}) \end{aligned}$$

Now assume C is a contour from point z_1 to z_2 . Then $C = C_1 + C_2 + \cdots + C_n$, where C_i is a smooth arc, for all $1 \leq i \leq n$ with parametric representation given by $\gamma_i : [a_{i-1}, a_i] \to \mathbb{C}$ such that $\gamma_1(a_0) = z_1$, $\gamma_n(a_n) = z_2$. Now,

$$\int_{\mathcal{C}_{\rangle}} f(z)dz = F(a_i) - F(a_{i-1})$$

$$\Rightarrow \int_{\mathcal{C}} f(z)dz$$

$$= \sum_{i=1}^{n} \int_{\mathcal{C}_{\rangle}} f(z)dz$$

$$= \sum_{i=1}^{n} (F(a_i) - F(a_{i-1}))$$

$$= F(a_n) - F(a_0)$$

$$= F(z_2) - F(z_1)$$

(b) \Rightarrow (c) Suppose that the integral of f(z) is independent of the contour in D and it only depends on the endpoints of the contour. Let C be any closed contour in D and let z_1 and z_2 be any two distinct points on C. Form two paths C_1 and C_2 from z_1 to z_2 . Since the values of the integral of f(z) is independent

of the contours, then $\int_{\mathcal{C}_1} f(z) dz = \int_{\mathcal{C}_2} f(z) dz$ implies

$$0 = \int_{\mathcal{C}_1} f(z)dz - \int_{\mathcal{C}_2} f(z)dz$$

= $\int_{\mathcal{C}_1} f(z)dz + \int_{-\mathcal{C}_2} f(z)dz$
= $\int_{\mathcal{C}} f(z)dz$, where $\mathcal{C} = \mathcal{C}_1 + (-\mathcal{C}_2)$

which shows that the integral of f(z) around closed contours lying in D is 0.

(c) \Rightarrow (a) Suppose integrals of f(z) around closed contours in D have a value of 0. Let C_1 and C_2 denote any two contours in D from point z_1 to a point z_2 . Then $C = C_1 + (C_2)$ is a closed contour in D and by assumption,

$$0 = \int_{\mathcal{C}} f(z)dz$$

= $\int_{\mathcal{C}_1 + (\mathcal{C}_2)} f(z)dz$
= $\int_{\mathcal{C}_1} f(z)dz + \int_{-\mathcal{C}_2} f(z)dz$
= $\int_{\mathcal{C}_1} f(z)dz - \int_{\mathcal{C}_2} f(z)dz$
 $\Rightarrow \int_{\mathcal{C}_1} f(z)dz$
= $\int_{\mathcal{C}_2} f(z)dz$

Note that this shows (c) \Rightarrow (b). Now fix any $z_0 \in D$ and define a function $F: D \to \mathbb{C}$ by

$$F(z) = \int_{z_0}^{z} f(s) ds, \quad \forall z \in D$$

The path independence of integrals imply that F is well-defined.

Claim:

$$F'(z) = f(z) \quad \forall z \in D$$

Let $z + \Delta z$ be any point distinct from z and lying in some neighborhood of z that is small enough to be contained in D (such a neighborhood exists since D is an open set).

$$F(z + \Delta z) - F(z) = \int_{z_0}^{z + \Delta z} f(s)ds - \int_{z_0}^{z} f(s)ds$$
$$= \int_{z_0}^{z} f(s)ds + \int_{z}^{z + \Delta z} f(s)ds - \int_{z_0}^{z} f(s)ds$$
$$= \int_{z}^{z + \Delta z} f(s)ds$$

Which implies

$$\frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) = \frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(s) ds - f(z)$$
$$= \frac{\int_{z}^{z + \Delta z} f(s) ds - f(z) \Delta z}{\Delta z}$$

We have $\int_{z}^{z+\Delta z} ds = [s]_{z}^{z+\Delta z} = (z + \Delta z) - z = \Delta z$, which gives us

$$\frac{F(z + \Delta z) - F(z)}{\Delta z} = \frac{\int_{z}^{z + \Delta z} f(s) ds - f(z) \int_{z}^{z + \Delta z} ds}{\Delta z}$$
$$= \frac{\int_{z}^{z + \Delta z} (f(s) - f(z)) ds}{\Delta z}$$

Since f is continuous at z, then for any $\epsilon > 0$ we may choose $\delta > 0$ such that, if $0 < |\Delta z| < \delta$, then $|f(s) - f(z)| < \epsilon$ for all s on the line segment from z to $z + \Delta z$. So, for $0 < |\Delta z| < \delta$,

$$\left|\frac{F(z+\Delta z) - F(z)}{\Delta z} - f(z)\right| = \left|\frac{\int_{z}^{z+\Delta z} ((f(s) - f(z)) \, ds}{\Delta z}\right|$$
$$\leq \frac{\epsilon |\Delta z|}{|\Delta z|}$$
$$= \epsilon$$

By ML-estimate with $M = \epsilon, L = \Delta z$, by assuming we are using a line from z to $z + \Delta z$,

$$F'(z) = \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = f(z)$$

which proves the claim, and so proves (a).

Green's Theorem

Let C be a positively oriented, piecewise smooth simple closed curve that bounds a domain D in the complex plane. Let P(x, y) and Q(x, y) be two real-valued functions defined on an open set R that contains D, and suppose that P and Qhave continuous first order partial derivatives on R, then

$$\int_{\mathcal{C}} P_{dx} + Q_{dx} = \iint_{R} \left(\frac{dQ}{dx} - \frac{dP}{dy} \right) dA$$

Cauchy's Theorem

Suppose that D is a simply connected domain, $f: 0 \to \mathbb{C}$ is analytic in D, and that f' is continuous in D. Then, for every simple closed contour \mathcal{C} in D,

$$\int_{\mathcal{C}} f(z) dz = 0$$

Proof:

The proof of this theorem follows immediately from Green's Theorem in \mathbb{R}^2 and the Cauchy-Riemann equations. Recall:

$$\int_{\mathcal{C}} f(z)dz = \int_{\mathcal{C}} (udx - vdy) + i \int_{\mathcal{C}} (vdx + udy)$$

Now we have assumed that f' is continuous in D. As a consequence, the real and imaginary parts of f(z) = u + iv and their first partial derivatives are continuous in D. By Green's Theorem, we obtain

$$\int_{\mathcal{C}} u dx - v dy = \iint_{D} \left(-\frac{dv}{dx} - \frac{du}{dy} \right) dA$$
$$\int_{\mathcal{C}} v dx + u dy = \iint_{D} \left(-\frac{du}{dx} - \frac{dv}{dy} \right) dA$$

Which implies

$$\int_{\mathcal{C}} f(z)dz = \iint_{D} \left(-\frac{dv}{dx} - \frac{du}{dy} \right) dA + i \iint_{D} \left(-\frac{du}{dx} - \frac{dv}{dy} \right) dA$$

Since f is analytic in D, the real and imaginary parts of f, u, and v respectively, satisfy the C-R equations: $\frac{du}{dx} = \frac{dv}{du}$ and $\frac{du}{dy} = -\frac{dv}{dx}$ at every point in D. Therefore,

$$\int_{\mathcal{C}} f(z) dz = 0$$

4.46.A (Cauchy-Goursat Theorem)

If a function f is analytic at all points interior to and on a simple closed contour C,

$$\int_{\mathcal{C}} f(z)dz = 0$$

Proof: See Sec. 4.47.

4.48.A (Cauchy-Goursat Theorem Extended)

We can remove the "simple" requirement of the contour in the original Cauchy-Goursat Theorem by using simply connected domains. This a more general version of the theorem since it allows the curve to cross itself.

If D is a simply connected domain and $f: D \to \mathbb{C}$ is analytic in D, then

$$\int_{\mathcal{C}} f(z)dz = 0$$

for any closed (not necessarily simple) contour \mathcal{C} lying in D.

Proof:

Case 1: C is a simple closed contour.

If C is simple and closed then the region enclosed by C is contained in D, and f is analytic in the region enclosed by C and on C. By the version of Cauchy-Goursat in Theorem 4.46.A, we have $\int_{C} f(z)dz = 0$.

Case 2: C is not simple, but intersects itself a finite number of times. Let C be such a contour in D. Subdivide C into a finite number of simple closed contours. Then,

$$\int_{\mathcal{C}} f(z)dz = \sum_{i} (\pm 1) \int_{\mathcal{C}_{i}} f(z)dz$$

where each contour C_i is simple and closed. Therefore,

$$\int_{\mathcal{C}_i} f(z)dz = 0, \quad \forall i$$
$$\sum_i (\pm 1) \int_{\mathcal{C}_i} f(z)dz = 0$$

hence $\int_{\mathcal{C}} f(z) dz = 0.$

Theorem 4.44.A

In a simple connected domain, any analytic function has an antiderivative, its contour integrals are independent of the path, and its integrals over a closed contour equal 0.

Theorem 4.49.A (Principle of Deformation of Contours)

Let C_1 and C_2 denote positively orient simple closed contours, where C_1 is interior to C_2 . If a function f is analytic in the closed region consisting of those contours and all points between them, then

$$\int_{\mathcal{C}_2} f(z)dz = \int_{\mathcal{C}_1} f(z)dz$$

This allows us to evaluate an integral over a complicated simple closed contour C by replacing C with a contour C_1 that is more convenient.

For example, consider integrating over a function with a singularity. We can obtain a general solution to these types of problems:

$$\int_{\mathcal{C}} \frac{dz}{(z-z_0)^n} = \begin{cases} 2\pi i & \text{if } n=1\\ 0 & \text{if } n\neq 1 \end{cases}$$

where $z_0 \in \mathbb{C}$ is a constant interior to any simple closed contour \mathcal{C} , and $n \in \mathbb{Z}$.

Cauchy-Goursat Theorem (for Multiply Connected Domains)

Let C be a simple closed contour within a domain D, and let C_k , where $k = 1, 2, \ldots, n$ be disjoin simple closed contours interior to the contour C. If f(z) is analytic at all points inside or on C, and outside or on each C_k , then

$$\int_{\mathcal{C}} f(z)dz = \sum_{k=1}^{n} \int_{\mathcal{C}_{k}} f(z)dz$$

Proof:

The idea is to use a crosscut between C and C_k , $\forall k = 1, 2, ..., n$. This produces a simply connected domain. Then as in the case of the doubly connected domain, we have

$$\int_{\mathcal{C}} f(z)dz = \sum_{k=1}^{n} \int_{\mathcal{C}_{k}} f(z)dz$$

Remarks 3

The Cauchy-Goursat Theorem gives only sufficient condition for the integral $\int_{\mathcal{C}} f(z)dz$ to be zero (namely, f is analytic inside \mathcal{C} and on \mathcal{C}). However, in certain cases, $\int_{\mathcal{C}} f(z)dz = 0$ even if f(z) is not analytic inside \mathcal{C} and on \mathcal{C} . For example, $f(z) = \frac{1}{z^2}$ is not analytic inside the contour

$$\mathcal{C}: \gamma(t) = Re^{it}, \quad 0 \le 2\pi, R > 0$$

yet,

$$\int_{\mathcal{C}} \frac{1}{z^2} dz = 0$$

Theorem 4.50.A (Cauchy's Integral Formula)

Let f(z) be an analytic function in a simply connected domain D. If C is a simple closed contour that lies inside D, and if z_0 is a fixed point inside C, then

$$f(z_0) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz$$

Proof:

Let D be a simply connected domain, C a simple contour inside D, and z_0 an interior point of C. Let C_r be a circle centered at z_0 and radius r small enough so that C_r lies within the interior of C. By the principle of deformation of contours, we have

$$\int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz = \int_{\mathcal{C}_r} \frac{f(z)}{z - z_0} dz$$

We want to show that the value of the integral on the RHS is $2\pi i f(z_0)$. To do this, we add and subtract the constant $f(z_0)$ in the numerator of the integral:

$$\int_{\mathcal{C}_r} \frac{f(z)}{z - z_0} dz = \int_{\mathcal{C}_r} \frac{f(z) - f(z_0) + f(z_0)}{z - z_0} dz$$
$$= \int_{\mathcal{C}_r} \frac{f(z) - f(z_0)}{z - z_0} dz + f(z_0) \int_{\mathcal{C}_r} \frac{1}{z - z_0} dz$$

Now, let C_r be parametrized by

$$\begin{split} \gamma(t) &= z_0 + re^{it}, \quad 0 \le t \le 2\pi \\ \int_{\mathcal{C}_r} \frac{1}{z - z_0} &= \int_0^{2\pi} \frac{rie^{it}}{re^i t} dt = \int_0^{2\pi} i dt = 2\pi i \\ \Rightarrow \int_{\mathcal{C}_r} \frac{f(z)}{z - z_0} dz &= \int_{\mathcal{C}_r} \frac{f(z) - f(z_0)}{z - z_0} dz + 2\pi i f(z_0) \end{split}$$

Since f is continuous at z_0 , then for any $\epsilon > 0$ there exists a $\delta > 0$ such that $|f(z) - f(z_0)| < \epsilon$ whenever $|z - z_0| < \delta$. In particular, if we choose the circle C_r to have a radius $r = \frac{1}{2}\delta < \delta$, then by the ML-inequality, we have

$$\left| \int_{\mathcal{C}_r} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le \frac{\epsilon}{r} (2\pi r) = 2\pi\epsilon$$

Thus the absolute value of the integral can be made arbitrarily small.

$$\begin{split} \int_{\mathcal{C}_r} \frac{f(z)}{z - z_0} dz &= \int_{\mathcal{C}_r} \frac{f(z) - f(z_0)}{z - z_0} dz + 2\pi i f(z_0) \\ \Rightarrow \int_{\mathcal{C}_r} \frac{f(z)}{z - z_0} dz - 2\pi i f(z_0) \\ &= \int_{\mathcal{C}_r} \frac{f(z) - f(z_0)}{z - z_0} dz \\ \Rightarrow \left| \int_{\mathcal{C}_r} \frac{f(z)}{z - z_0} dz - 2\pi i f(z_0) \right| \\ &= \left| \int_{\mathcal{C}_r} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \\ &\leq 2\pi \epsilon \end{split}$$

Divide both sides by $\frac{1}{2\pi}$,

$$\left|\frac{1}{2\pi i} \int_{\mathcal{C}_r} \frac{f(z)}{z - z_0} dz - f(z_0)\right| \le \epsilon$$

Since ϵ is arbitrary,

$$\frac{1}{2\pi i} \int_{\mathcal{C}_r} \frac{f(z)}{z - z_0} dz - f(z_0) = 0$$

Since

$$\frac{1}{2\pi i} \int_{\mathcal{C}_r} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz$$
$$f(z_0) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz$$

Theorem 4.50.A (Cauchy's Integral Formula - Version 2)

If f is analytic at all points within and on a simple closed contour C, and z_0 is any point interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz$$

Theorem (?)

Let f(z) and g(z) be two complex functions that are analytic inside and on a simple closed contour C. If f(z) = g(z) for all $z \in C$, then f(z) = g(z) for all z interior to C.

Proof:

Let z_0 be a point inside C. Then, by Cauchy's Integral Formula, we have

$$f(z_0) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{z - z_0} dz$$
$$g(z_0) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{g(z)}{z - z_0} dz$$

Let $\gamma(t)$, $a \leq t \leq b$ be a parametric representation of the contour \mathcal{C} . Then,

$$\int_{\rfloor} \frac{f(z)}{z - z_0} = \int_a^b \frac{f(\gamma(t))}{\gamma(t) - z_0} \gamma'(t) dt$$
$$\int_{\rfloor} \frac{g(z)}{z - z_0} = \int_a^b \frac{g(\gamma(t))}{\gamma(t) - z_0} \gamma'(t) dt$$

But $f(\gamma(t)) = g(\gamma(t))$ for all $t \in [a, b]$, therefore

$$\int_{a}^{b} \frac{f(\gamma(t))}{\gamma(t) - z_{0}} \gamma'(t) dt = \int_{a}^{b} \frac{g(\gamma(t))}{\gamma(t) - z_{0}} \gamma'(t) dt$$
$$\Rightarrow \int_{\mathcal{C}} \frac{f(z)}{z - z_{0}} dz = \int_{\mathcal{C}} \frac{g(z)}{z - z_{0}}$$
$$\Rightarrow 2\pi i f(z_{0}) = 2\pi i g(z_{0})$$
$$\Rightarrow f(z_{0}) = g(z_{0})$$

Since z_0 is arbitrary, f(z) = g(z) for all z interior to C.

Theorem 4.51.A (Cauchy's Integral Formula for Derivatives

Suppose that f is analytic in a simply connected domain D and C is any simple closed contour lying entirely inside D. Then for any point z_0 inside C, $f^{(n)}(z_0)$ exists and

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{(z-z_0)^{n+1}} dz$$

where $n = 0, 1, 2, 3, \dots$

Proof:

Let z be any point inside C, then by Cauchy's Integral Formula we have

$$f(z) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(s)}{s-z} ds$$

then,

$$f'(z) = \frac{1}{2\pi i} \frac{d}{dz} \left(\int_{\mathcal{C}} \frac{f(s)}{s-z} ds \right)$$
$$= \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{d}{dz} \left(\frac{f(s)}{s-z} \right) ds$$
$$= \frac{1}{2\pi i} \int_{\mathcal{C}} \left[f(s) \frac{d}{dz} \left(\frac{1}{s-z} \right) \right] ds$$
$$= \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(s)}{(s-z)^2} ds$$

Differentiating again w.r.t. z gives us,

$$f''(z) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{d}{dz} \left(\frac{f(s)}{(s-z)^2} \right) ds$$
$$= \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{2f(s)}{(s-z)^2} ds$$
$$= \frac{2!}{2\pi i} \int_{\mathcal{C}} \frac{f(s)}{(s-z)^2} ds$$

With repeated differentiation we see that

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\mathcal{C}} \frac{f(s)}{(s-z)^{n+1}} ds$$

Theorem (??)

If f is analytic in a simple connected domain D, then f has derivatives of all orders at every point z in D. Furthermore, $f^{(n)}$, for n = 0, 1, 2, ... are analytic in D.

Proof:

If a function f(z) = u(x, y) + iv(x, y) is analytic in D, we have shown its derivatives of all orders exists at any point z in D and so f', f'', \ldots are continuous.

$$f'(z) = \frac{du}{dx} + i\frac{dv}{dx} = \frac{dv}{dy} - i\frac{du}{dy}$$
$$f''(z) = \frac{d^2u}{dx^2} + i\frac{d^2v}{dx^2} = \frac{d^2v}{dydx} - i\frac{d^2u}{dydx}$$
$$\vdots$$

Thus the real functions u and v have continuous partial derivatives of all orders and satisfy the C - R equations at any point of D. Hence $f^{(n)}(z)$ is analytic for $n = 1, 2, 3, \ldots$ and all $z \in D$.

Theorem (???)

Let f(z) be analytic inside and on a simple closed contour \mathbb{C} , then we have

$$\int_{\mathcal{C}} \frac{f^{(n)}(z)}{z - z_0} dz = n! \int_{\mathcal{C}} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

for $n = 1, 2, 3, \ldots$

Proof:

From CIF applied to $g(z) = f^{(n)}(z)$ for a fixed $n \in \mathbb{N}$, we have

$$f^{(n)}(z_0) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f^{(n)(z)}}{z - z_0} dz$$

From CIFD applied to f(z) and n, we have

$$\begin{aligned} f^{(n)}(z_0) &= \frac{n!}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{(z-z_0)^{n+1}} dz \\ \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f^{(n)}(z)}{z-z_0} dz &= \frac{n!}{2\pi i} \int_{\mathcal{C}} \frac{f(z)}{(z-z_0)^{n+1}} dz \\ \Rightarrow \int_{\mathcal{C}} \frac{f^{(n)}(z)}{z-z_0} dz &= n! \int_{\mathcal{C}} \frac{f(z)}{(z-z_0)^{n+1}} dz \end{aligned}$$

Theorem 4.52.1

If a function f is analytic at a given point, then its derivatives of all orders are analytic at that point too.

Proof:

See notes (pg. 170).

Corollary 4.52.A

If f(z) = u(x, y) + iv(x, y) is analytic at a point $z_0 = x_0 + iy_0$, then the real and imaginary parts u(x, y) and v(x, y) have continuous partial derivatives of all orders at (x_0, y_0) .

Proof:

See notes (pg. 172).

Corollary 4.52.2 (Morera's Theorem)

If $f: D \to \mathbb{C}$ is continuous in a domain D and $\int_{\mathcal{C}} f(z)dz = 0$ for all closed contours \mathcal{C} in D, then f is analytic in D, and f(z) = F'(z) for some analytic function F on D.

Proof:

See notes (pg. 173).

Theorem ????

Let $f: D \to \mathbb{C}$ be continuous in a simply connected domain and let \mathcal{C} be closed contour in D. Then a necessary and sufficient condition for f to be analytic in D is that $\int_{\mathcal{C}} f(z)dz = 0$.

Proof:

Excersise.

Theorem 4.52.3 (Cauchy's Inequality)

Suppose that a function f is analytic on and inside a circle C_R centered at point z_0 with radius R. If M is the maximum value of |f(z)| on C_R , then for all $n \in \mathbb{N}$,

$$\left|f^{(n)}(z_0)\right| \le \frac{n!M}{R^n}$$

Proof: See notes (pg. 175).

Theorem 4.53.1 (Liouville's Theorem)

If f is entire and there is a constant M such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$, then f is constant over the complex plane.

Proof:

See notes (pg. 176).

Remarks 4

 $f(z) = \sin z$ and $f(z) = \cos z$ are entire functions and therefore they are unbounded. This is in sharp to the bounded real functions $f(x) = \sin x$ and $f(x) = \cos x$.

Theorem 4.53.2 (Fundamental Theorem of Algebra)

Any nonconstant complex polynomial $p(z) = a_0 + a_1 z + \cdots + a_n z^n$, when $a_0, a_1, \ldots, a_n \in \mathbb{C}$ and of degree $n \ge 1$, has at least one zero. That is, there exists at least one point $z_0 \in \mathbb{C}$ such that $p(z_0) = 0$.

Proof:

See notes (pg. 178).

Remarks 5

Consider a polynomial p(z) of degree $n \ge 1$ with complex coefficients. By the Fundamental Theorem of Algebra, p(z) has a zero, say $z_1 \in \mathbb{C}$. So by the Factor Theorem, $p(z) = (z - z_1)q_1(z)$ for some complex polynomial $q_1(z)$ of degree n - 1. We can repeat this argument with $q_1(z)$ and obtain $p(z) = (z - z_1)(z - z_2)q_2(z)$, and so forth. Then we can factor p(z) into linear factors of the form $p(z) = c(z - z_1)(z - z_2) \dots (z - z_n)$, where c is a nonzero complex number and $z_1, \dots, z_n \in \mathbb{C}$ (z_i 's might not be distinct).